The Model 40/15 is a DC-stable, high-voltage power amplifier featuring an all solid-state design for high slew rate, wide bandwidth, and low-noise operation. It is configured as noninverting with a fixed gain of 4000 V/V and is protected against overvoltage and overcurrent conditions that may be generated by active loads or by output short circuits to ground. Precision voltage and current monitors provide low-voltage representations of the high-voltage output and load current for monitoring purposes or for use as feedback signals in a closed-loop system.

The 4-quadrant, active output stage sinks or sources current to reactive or resistive loads throughout the output voltage range. This is essential to achieve the accurate output response and high slew rates demanded by reactive loads.

Key Specifications

- Output Voltage Range: 0 to ±40 kV DC or peak AC
- Output Current Range: 0 to ±15 mA DC or peak AC
- Slew Rate: Greater than 350 V/µs
- Large Signal Bandwidth: DC to greater than 1.4 kHz (2% Distortion)
- DC Voltage Gain: Fixed at 4000 V/V

Typical Applications Include

- Dielectric studies
- Electron beam ion traps and ion sourcing
- Electrospinning
- Electrostatic deflection (including ion beam steering)
- Electrostatic flame control
- Electrostatic levitation
- Electrostatic precipitation
- High-voltage cable testing
- High-voltage component testing
- Plasma studies (including dielectric barrier discharge)

Features and Benefits

- Four-quadrant output for driving capacitive loads
- Closed loop system for high accuracy
- Short-circuit protected for equipment protection
- All solid-state design for maintenance free operation
- DC-stable for programmable supply applications
- Low output noise for ultra-accurate outputs
- NIST-traceable Certificate of Calibration provided with each unit
- CE compliant
Features

High-Voltage On/Off
- **Local**: Individual push-button switches
- **Remote**: TTL compatible input. TTL high (or open) turns off high-voltage output. TTL low turns on high-voltage output.

Dynamic Adjustment
Graduated 1-turn panel potentiometer is used to optimize the AC response for various load parameters.

Current Limit/Trip
Switch selectable for limit or trip. Graduated 1-turn panel potentiometer is used to adjust limit or trip level from 0 to ±15 mA.

Out of Regulation Status Indicator and Connector
Illuminates and TTL low is provided when unit fails to produce required HV output such as during current limit.

Limit/Trip Status Indicator and Connector
An indicator will illuminate and a BNC will provide a TTL low when the high-voltage output is disabled due to the output current exceeding the current trip level, the detection of a high-voltage power supply fault, removal of one of the panels, or if the Model 40/15 is in an out of regulation status for greater than 500 ms.

Mechanical

Dimensions
1239 mm H x 578 mm W x 893 mm D (49” H x 22.8” W x 35” D)

Weight
100 kg (220 lb)

HV Connector
Caton High Voltage Connector

BNC Connectors
Amplifier Input, Voltage Monitor, Current Monitor, Remote High Voltage ON/OFF, Out of Regulation Status, Fault/Trip Status

Operating Conditions

Temperature
0°C to 40°C (32°F to 104°F)

Relative Humidity
To 75%, noncondensing

Altitude
To 1524 meters (5000 ft.)

Electrical

Line Voltage
180 to 250 V AC at 48 to 63 Hz

Power Consumption
1800 VA, maximum

AC Line Receptacle
Standard 3-prong with integral fuse holder

Supplied Accessories

- **Operators Manual**
 PN: 23392
- **Shorting BNC Cap**
 PN: B3060
- **HV Output Cable**
 PN: 43466
- **Line Cord, Fuses**
 Selected per geographic destination

Model 40/15 Specifications

Performance

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage Range</td>
<td>0 to ±40 kV DC or peak AC</td>
</tr>
<tr>
<td>Output Current Range</td>
<td>0 to ±15 mA DC or peak AC</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>0 to ±10 V DC or peak AC</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>25 kΩ, nominal (inverting/differential option 50 kΩ nominal)</td>
</tr>
<tr>
<td>DC Voltage Gain</td>
<td>4000 V/V</td>
</tr>
<tr>
<td>DC Voltage Gain Accuracy</td>
<td>Better than 0.1% of full scale</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>Less than ±4 V</td>
</tr>
<tr>
<td>Output Noise</td>
<td>Less than 5 V rms*</td>
</tr>
<tr>
<td>Slew Rate (10% to 90%, typical)</td>
<td>Greater than 350 V/µs</td>
</tr>
<tr>
<td>Small Signal Bandwidth (-3dB)</td>
<td>DC to greater than 20 kHz</td>
</tr>
<tr>
<td>Large Signal Bandwidth (2% distortion)</td>
<td>DC to greater than 1.4 kHz</td>
</tr>
<tr>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>Drift with Time</td>
<td>Less than 50 ppm/hr, noncumulative</td>
</tr>
<tr>
<td>Drift with Temperature</td>
<td>Less than 100 ppm/°C</td>
</tr>
</tbody>
</table>

Voltage Monitor

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>1 V / 4000 V</td>
</tr>
<tr>
<td>DC Accuracy</td>
<td>Better than 0.1% of full scale</td>
</tr>
<tr>
<td>DC Offset Voltage</td>
<td>Less than ±2 mV</td>
</tr>
<tr>
<td>Output Noise</td>
<td>Less than 20 mV rms*</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>47 Ω</td>
</tr>
</tbody>
</table>

Current Monitor

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>0.5 V/mA</td>
</tr>
<tr>
<td>DC Accuracy</td>
<td>Better than 2% of full scale</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>Less than ±10 mV</td>
</tr>
<tr>
<td>Output Noise</td>
<td>Less than 30 mV rms*</td>
</tr>
<tr>
<td>Bandwidth (-3dB)</td>
<td>DC to greater than 5 kHz</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>47 Ω</td>
</tr>
</tbody>
</table>

*Measured using the true rms feature of the Hewlett Packard Model 34401A digital multimeter

Copyright © 2012 TREK, INC. All specifications are subject to change. 1248/JRB